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Abstract. We study the temperature crossovers seen in the magnetic and transport properties of
cuprates using a nearly antiferromagnetic Fermi-liquid model (NAFLM). We distinguish between
underdoped and overdoped systems on the basis of their low-frequency magnetic behaviour and
so classify the optimally doped cuprates as a special case of the underdoped cuprates. For the
overdoped cuprates, we find, in agreement with earlier work, mean-fieldz = 2 behaviour of
the magnetic variables associated with the fact that the damping rate of their spin fluctuations
is essentially independent of temperature, while the resistivity exhibits a crossover from Fermi-
liquid behaviour at low temperature to linear-in-T behaviour above a certain temperatureT0.
We demonstrate that aboveT0 the proximity of the quasiparticle Fermi surface to the magnetic
Brillouin zone boundary brings about the measured linear-in-T resistivity. For the underdoped
cuprates we argue that the sequence of crossovers identified by Barzykin and Pines in the
low-frequency magnetic behaviour (from mean-fieldz = 2 behaviour at high temperatures,
T > Tcr , to non-universalz = 1 scaling behaviour at intermediate temperatures,T∗ < T < Tcr ,
to pseudogap behaviour belowT∗) reflects the development in the electronic structure of a
precursor to a spin-density-wave state. This development begins atTcr with a thermal evolution
of the quasiparticle spectral weight which brings about temperature-dependent spin damping and
ends atT∗ where the Fermi surface has lost pieces near corners of the magnetic Brillouin zone.
For T∗ < T < Tcr the resistivity is linear inT because this change in spectral weight does not
affect the resistivity significantly; belowT∗ vertex corrections act to bring about the measured
downturn in(ρ(T ) − ρ(0))/T and approximately quadratic-in-T resistivity for T � T∗.

1. Introduction

Over the past few years, it has become increasingly clear to the ‘high-Tc’ community
that the mechanism of superconductivity in cuprates is directly related to their unusual
properties in the normal state, particularly in the underdoped regime. The63Cu spin–lattice
relaxation rate and spin-echo decay rate (Slichter 1994, Barzykin and Pines 1995, Curro
et al 1996), uniform susceptibility (Johnson 1989), and in-plane andc-axis resistivity,
ρxx and ρc (Ong 1990, Iye 1992) all demonstrate temperature dependences which over a
wide temperature range are different from the predictions of Landau Fermi-liquid theory.
The remarkable sequence of crossovers (from non-universal mean-field behaviour with a
dynamical exponentz = 2 to z = 1 pseudoscaling behaviour to pseudogap behaviour) seen
in magnetic experiments in the normal state of the optimally doped and underdoped cuprates
are shown in figure 1. Characterizing and explaining this behaviour, which has counterparts
in angle-resolved photoemission experiments (Marshallet al 1996, LaRosaet al 1996, Ding
et al 1996), transport measurements (Hwanget al 1994), and optical experiments (Puchkov
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Figure 1. The schematic behaviour of various observables in underdoped cuprates (after
Barzykin and Pines 1995). The temperature scalesTcr and T∗ indicate crossovers which are
defined and discussed in the text.

et al 1996) on the underdoped cuprates, is perhaps the major challenge currently facing the
high-Tc community.

The effectively non-Landau-liquid behaviour at intermediate energy scales has
stimulated intensive discussions on a possible violation of Fermi-liquid theory in cuprates
(Anderson 1987, 1994). There is currently no consensus on whether Fermi-liquid behaviour
is actually broken atT = 0. Some researchers believe that the ground state of underdoped
and optimally doped cuprates is not a Fermi liquid: in particular, a non-Fermi-liquid ground
state is a point of departure for gauge theories based on spin–charge separation (see, e.g.,
Lee and Nagaosa (1992), Nagaosa and Lee (1992), Altshuleret al (1995)), and for theories
in which pairing is due to pair hopping between adjacent layers (Chakravarty and Anderson
1994). Another conjecture is that there exists an isolated zero-temperature quantum-critical
point at a doping concentration near optimal doping (Varma 1996). On both sides of this
point, it is proposed that the system behaves as a Fermi liquid at the lowestT , but exhibits
a non-Fermi-liquid quantum-critical behaviour above the crossover temperature, which near
optimal doping is assumed to be smaller thanTc.

The authors of the present paper have argued in favour of a third possibility, a nearly
antiferromagnetic Fermi-liquid model (NAFLM) for cuprates (for a review see, e.g, Pines
1995). In this approach there is no spin–charge separation. One assumes that Fermi-
liquid behaviour is not destroyed by fluctuations at any doping concentration, while the
measured anomalous (non-Landau-like) spin and charge behaviour seen in the normal-state
properties of the cuprates arises from a magnetic interaction between planar quasiparticles
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which reflects the close approach of even an optimally doped system to antiferromagnetism.
Initial support for the NAFLM came from the NMR experiments which clearly demonstrate
the difference between Cu and O spin–lattice relaxation rates and establish the presence of
strong temperature-dependent antiferromagnetic correlations (for a review see Slichter 1994).
More recently the model has been shown to be also consistent with neutron scattering data
which show that even at optimal doping, the spin fluctuations are peaked at a wavevector
Q which is at or near(π, π) with a magnitude,χQ � χ0, and a half-width, 1/ξ , which
at low temperatures is considerably smaller than the inverse lattice spacing (Masonet al
1994, Bourgeset al 1996, Zhaet al 1996). Moreover, recent experiments have shown that
even at optimal doping there still exist propagating spin waves at energies comparable to
the exchange integral (Haydenet al 1996).

In this paper, we consider the extent to which the NAFLM can explain the temperature
crossovers in magnetic and resistivity measurements in both overdoped and underdoped
cuprates. We will show that the NAFLM yields a sequence of crossovers and changes in
the uniform susceptibility, NMR relaxation rates and resistivity which are consistent with
experiments. In particular, we will show how for the underdoped cuprates the Fermi-surface
evolution which accompanies the development of a precursor to a spin-density-wave state
gives rise toz = 1 scaling at intermediate temperatures, and the pseudogap behaviour at
the lowest temperatures.

The paper is organized as follows. In the next section we review the NAFLM
description of cuprates and its relationship with the underlying microscopic models with
fermion–fermion interaction. In sections 3, 4 and 5 we discuss the physics of overdoped,
underdoped and optimally doped cuprates, respectively. Finally, in section 6 we summarize
our conclusions.

2. The nearly antiferromagnetic Fermi-liquid model

The canonical NAFLM model is in some respects a two-fluid model for cuprates: it is
equivalent to assuming that there independently exist fermionic carriersand localized spins
whose susceptibility is determined from fits to NMR experiments and is an input parameter
in the theory. Fermions and spins are coupled by

Hint =
∑

q,k,α,β

gq c
†
k+q,α σα,β ck,β · Sq (1)

where gq is the momentum-dependent coupling constant, andσi are the Pauli matrices.
The momentum dependence of the coupling constant is not relevant for our considerations,
and for simplicity we will neglect it throughout the paper.

To second order in the coupling, the spin–fermion interaction gives rise to an effective
pairing interaction between planar quasiparticles

Veff (q, ω) = g2χ(q, ω) (2)

where χ(q, ω) is the susceptibility of localized spins. NMR and neutron scattering
experiments clearly indicate that near optimal doping the spin fluctuations are overdamped
at low energies with a dynamical structure factor peaked at a wavevectorQ which is close
to (π, π) and symmetry-related points. From general considerations, one can then write
near q = Q and ω = 0 (Millis et al 1990, Barzykinet al 1993, Monthoux and Pines
1994b)

χ(q, ω) = χQ

1 + (q − Q)2ξ2 − iω/ωsf − ω2ξ2/c2
sw

(3)
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where χQ = αξ2, ξ is the correlation length,csw is the spin-wave velocity, andωsf =
c2
sw/2ξ2γ whereγ is a damping rate. The fits to the NMR data show that the parameters

ξ , χQ andωsf depend on temperature, while the scale factorα and the spin-wave velocity
csw are virtually independent ofT in the temperature range of NMR experiments (Barzykin
and Pines 1995).

It is also essential that the fermions arenot assumed to be free particles atg = 0,
and their Green’s function is well defined only near the Fermi surface whereG(k, ω) =
Zk/(ω − εk). The dispersion,εk, is another input parameter in the theory. It is generally
assumed to have the same form as in the tight-binding model with hopping between nearest
and next-nearest neighbours on a square lattice:

εk = −2t (coskx + cosky) − 4t ′ coskx cosky. (4)

This form of εk (with t ′ < 0) is chosen to be consistent with the shape of the Fermi surface
measured in photoemission experiments at around optimal doping (Siet al 1993). Explicit
calculations show (Monthoux and Pines 1993) that at these doping levels, the interaction
with spin fluctuations does not modify substantially the shape of the Fermi surface as long
as the coupling constant remains roughly smaller than the quasiparticle damping rate.

In principle, the correlation length in (3) should be large enough compared to the
interatomic spacing to ensure that the susceptibility is peaked atQ. In practice (Pines
1995), it turns out that a correlation length of the order of a lattice spacing already yields
an appreciable peak inχ(q, ω). Furthermore, the analytical expansion in(q − Q)2 andω

is valid only outside the fluctuation region for a magnetic phase transition. This region is
however rather narrow and most experiments are performed outside it. A more essential
point is thatχ(q, ω) in equation (3) does not satisfy the sum rule for the local susceptibility,
as the 3D integral

∫
d2q dω χ(q, ω) diverges at the upper limit. One way to obtain

convergence is to include higher-order terms in the expansion over momentum. Another
way, which we will adopt here, is to introduce a sharp cut-off,C, in the integration over
csw(q − Q). Due to the thermal dependence ofξ and ωsf in equation (3), the cut-off
parameterC also depends on temperature. On general grounds, the larger the correlation
length, the smaller the cut-off scale. However,C does not vanish when the correlation
length diverges.

Although the phenomenological NAFLM considers localized spins as an independent
degree of freedom, equations (1) and (2) can be derived from microscopic considerations
departing from, e.g., the one-band Hubbard model which contains only fermionic degrees
of freedom (Shraiman and Siggia 1988, Schriefferet al 1989, Chubukov and Frenkel 1992,
Bulut et al 1993, Scalapino 1994, Kampf 1994, Sachdevet al 1995). In this approach,
spin fluctuations appear as a collective mode of fermions. To obtain the coupling between
two fermions and one spin fluctuation, as in equation (1), one has to dress the original
four-fermion Hubbard interaction term by summing the RPA series in the particle–hole
channel. As a result of the summation, the product of the two fermionic Green’s functions
is replaced by a spin susceptibility whose poles correspond to spin-fluctuation modes. The
susceptibility thus obtained takes the general form

χ(q, ω) = χ̃(q, ω)

1 − gχ̃(q, ω)
(5)

in which χ̃(q, ω) is the irreducible particle–hole susceptibility, andg (the same as in
equation (1)) is a coupling constant for the pair interaction between fermions. For example,
for on-site Hubbard interaction,g = U . The momentum and frequency dependence of
the spin susceptibility obtained in the Hubbard-based approach is generally consistent with
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the phenomenological predictions except that at any finite doping level the peak in the
susceptibility is located at an incommensurate momentumQ determined by the maximum
in χ̃(q, 0). (see, e.g., Gr̈uner 1994). It is essential however that for fermionic dispersion as
in equation (4), the enhancement ofχ(q, ω) comes solely from near resonance in the
denominator in equation (5), while the irreducible particle–hole susceptibility does not
contain any information about strong magnetic fluctuations, and near the peak atq = Q has
a conventional Fermi-liquid form

χ̃(Q, ω) = αξ̃2

1 − iω/0̃Q

(6)

whereξ̃ is of the order of the lattice spacing, and0̃Q is an energy comparable to a fermionic
bandwidth. We also assumed that there exist points on the Fermi surface which can be
connected byQ; otherwise,0̃Q would be infinite. It then follows from equation (5) that

ωsf ≡ c2
sw

2γ ξ2
= 0̃Qξ̃2

ξ2
. (7)

We see therefore that the key feature which makes the physics in the nearly antiferromagnetic
Fermi liquid different from that in a conventional Fermi liquid is the presence of an energy
scaleωsf ∝ ξ−2, which vanishes when the magnetic correlation length becomes infinite,
and is obviously much smaller than the fermionic bandwidth as long as the susceptibility is
strongly enhanced nearQ.

There are, however, several subtleties with the microscopic derivation of equation (3).
First, in a RPA calculation, the fermions which contribute to the spin susceptibility are
generally assumed to behave as free particles everywhere in momentum space, i.e., one
completely neglects the incoherent part of the quasiparticle Green’s function. For the
calculations of the imaginary part ofχ(q, ω), this assumption is justified as the integration
over fermionic momentum is confined to a region where both fermions in the bubble have
momenta near the Fermi surface. For these fermions, the incoherent part of the fermionic
Green’s function is irrelevant. The special points in momentum space for which bothk
andk + Q are on the Fermi surface are usually referred to as hot spots (Hlubina and Rice
1995a, b). The real part ofχ , on the other hand, comes from an integration over regions
in momentum space which are far from the Fermi surface (see, e.g., Rickayzen 1980).
In these regions, the incoherent part ofG(k, ω) cannot be neglected as demonstrated in
photoemission experiments (Wellset al 1995, Campuzanoet al 1994). It is therefore likely
that the actual position of the peak in Reχ(q, ω) is different from the RPA result and may
well depend not only on doping but also on temperature.

Second, even though the computation of Imχ(q, ω) involves only coherent parts of
the quasiparticle Green’s functions, the RPA approach neglects possible strong vertex
corrections to the polarization bubble. Explicit calculations show that these corrections
are the strongest for the hot spots (Chubukov 1995, Altshuleret al 1995, Amin and Stamp
1996, Monthoux 1996). At small coupling they are obviously small to the extent that
g/

√
γωsf 6 1. At somewhat larger couplings,g > √

γωsf , the relative vertex corrections
which come from the integration near the Fermi surface scale as [g2ωsf χQ/v2

F ] log(C/ωsf ),
where vF is the Fermi velocity (we set the interatomic spacinga = 1). Now, if the
damping term is computed self-consistently, thenωsf by itself scales asg−2, and the
relative vertex correction depends ong only logarithmically. More explicitly, we have
geff = g[1 + 2β log(C/ωsf )] whereβ depends only on the shape of the Fermi surface near
the hot spots, and is about 1/16 for the experimentally measured Fermi surface at optimal
doping (Altshuleret al 1995, Chubukov 1995). Notice that vertex correctionsincrease
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the spin–fermion interaction (geff > g) and hence act in favour of magnetically induced,
Eliashberg-type d-wave superconductivity. We see thatβ is small numerically, so if the
logarithm is not large, the relative vertex correction can be neglected. In this case, the RPA
analysis is approximately valid, and the imaginary part of the full susceptibility comes solely
from the imaginary part of the particle–hole bubble. This is what we believe happens in the
overdoped regime, which we associate with moderate values ofg ∼ √

γωsf in equation (1).
However, we will argue below that the underdoped cuprates are described by a spin–fermion
model with a somewhat larger ratiog/

√
γωsf , where new physics associated with Fermi-

surface evolution appears. If we formally keep using the self-consistent approach, we find
that at the onset of the Fermi-surface evolution, the logarithmic term overshadows the
smallness ofβ, and the relative vertex correction is not small. In particular, forg = g(1)

cr

defined below, 2β logC/ωsf ≈ π/4. In this situation, the validity of the self-consistent
RPA calculations of the damping term also becomes questionable.

From the above considerations we see that, although some properties of the NAFLM
can be derived in Hubbard-based calculations, one has to be careful about using an RPA
formalism in calculating the dynamical spin susceptibility. We therefore advocate a semi-
phenomenological approach in which it is assumed that the spin susceptibility has the form
of equation (3), with bothξ andγ taken from fits to the experimental data. We emphasize
however that from a physical perspective, onlyξ should be considered as an independent
input parameter for equation (1). The damping of spin excitations due to the interaction with
fermions is fully described by a spin–fermion model, and we will use the phenomenological
form for ωsf only because we are currently unable to self-consistently compute the spin
damping atg � cswξ−1. We will, however, be able to estimate the value of the spin
damping at very large couplings where the electronic structure develops the precursor of a
spin-density-wave form.

We now consider the extent to which the physical properties of the normal state can be
explained by the NAFLM.

3. Overdoped cuprates

We first discuss the overdoped cuprates. We define overdoped systems as those whose
magnetic behaviour is such that in the normal state their uniform magnetic susceptibility,
χ0, is either independent ofT or even increases with decreasing temperature, while the
product 63T1T and the square of the63Cu spin-echo decay rate(63T2G)2 are linear inT

above some temperatureT = Tcr ; see figure 2. At lower temperatures,T1T becomes
independent ofT as in a conventional Fermi liquid. Examples of overdamped systems are
La2−xSrxCuO4 for x > 0.2 and Bi 2212 and Tl 2201 for the appropriate oxygen content. The
measured resistivity of overdoped cuprates is linear inT above some particular temperature
T = T0 ∼ Tcr and has a Fermi-liquid formρ ∼ T 2 at T � T0; see figure 3. There is
therefore just one crossover in system behaviour; see figure 4(a).

Our theoretical interpretation of the experiments on overdoped cuprates is based on the
conjecture, first put forward by Barzykin and Pines (1995), that in these systemsγ andcsw

are independent of temperature, whileξ 6 2 for all T > Tc. This in turn implies that for
overdoped cuprates

ωsf ξ2 = constant. (8)

Since the correlation lengthξ (which, we remind the reader, is an input parameter for
the NAFLM) does not exceed a few interatomic spacings, its temperature dependence is
governed by fluctuations at lattice scales and is likely to be material dependent. NMR
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Figure 2. (a) The copper spin–lattice relaxation rate63T1T as a function of temperature in
slightly overdoped Tl2Ba2CuO6+x (Itoh et al 1994). Above 150 K63T1T and, hence,ωsf is
proportional toT . At lower temperatures,63T1T becomesT -independent as in a conventional
Fermi liquid; (b) the ratio63T1T/T 2

2G, whereT2G is the spin-echo decay time. This ratio is
practically independent of temperature, which is consistent withz = 2 scaling.

experiments tell us that for all of the compounds studiedξ−2 scales linearly withT , i.e.,
ξ−2 = A + BT , whereA andB are (material-dependent) constants. More specifically, fits
to the NMR data using equation (3) and the standard Shastry–Mila–Rice Hamiltonian for
hyperfine interactions (Shastry 1989, Mila and Rice 1989), then yield (Thelen and Pines
1994):

63T1T ∼ ωSF

α
∼ A + BT (9)

and

(63T2G)2 ∼
(

1

αξ

)2

∼ A + BT (10)

in agreement with the experimental results. The form of the susceptibility withγ andcsw

independent of temperature andξ−2 = A + BT is formally equivalent to that found in the
z = 2 quantum-critical regime (Sachdevet al 1995). Clearly then, theT -dependence of all
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Figure 3. The resistivity as a function of temperature for two overdoped Tl2Ba2CuO6+δ samples
(Kitaoka et al 1991) withTc = 40 K (upper curve) andTc = 0 K (lower curve). The second
sample is more heavily overdoped. Notice a pronouncedT 2-behaviour in both samples at very
low temperatures. The top curve clearly exhibits a crossover toρ ∝ T somewhere between 100
and 200 K. The crossover temperature for the bottom curve is presumably larger than 300 K.

Figure 4. A sequence of crossovers in overdoped (a) and underdoped (b) cuprates.

observables associated with the spin susceptibility near(π, π) should be the same as for
z = 2 scaling (Millis et al 1990). In particular, the measured ratio63T1T/63T 2

2G ∝ ωsf ξ2 is
independent of temperature; see figure 2.

However, the analogy withz = 2 scaling is only a formal one. Although it works for
observables, such as63T1 andT2G, which probe the susceptibility near(π, π), the behaviour
of the uniform susceptibility does not follow the scaling prediction, which is based on the
assumption that spin fluctuations nearq = 0 andq = Q are related. These are not related
for the overdoped cuprates because their physics is dominated by the short-wavelength
fluctuations. Indeed, aboveTcr , χ0(T ) decreases with increasingT (NMR studies show
that Tcr roughly corresponds to the temperature whereχ0(T ) is a maximum). On the other
hand, 1/N quantum-critical calculations yieldχ0(T ) linearly increasing withT in thez = 2
regime (Sachdevet al 1995)†. As microscopic self-consistent (Eliashberg) calculations
show (Monthoux and Pines 1993, 1994a), the decrease of susceptibility with increasing
temperature is a natural consequence of lifetime effects, which act to reduceχ0(T ), and

† There is some uncertainty in the scaling prediction forχ0(T ) becaused = 2 is an upper critical dimension for
the T = 0 transition. Ioffe and Millis argued that the linear term in susceptibility could be of either sign (Ioffe
and Millis 1995). The sigma-model-based calculations yield a positive linear-in-T term (Sachdevet al 1995).
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which play an increasingly important role as the temperature increases.
The behaviour of the resistivityρ is also non-universal, and, in principle, depends on

the details of the electronic band structure. However, as we now show, in an argument
which we shall see applies to the optimally doped cuprates as well as overdoped cuprates,
ρ(T ) is in fact proportional toT over a wide temperature range due to the proximity of the
quasiparticle Fermi surface to the magnetic Brillouin zone boundary. The reason for this is
the following: according to the Drude formula, which is applicable to the overdoped cuprates
because vertex corrections are small, the conductivity is proportional to the quasiparticle
relaxation time averaged over the Fermi surface. The inverse relaxation time—the relaxation
rate—is given by the imaginary part of the quasiparticle self-energy. As discussed above,
the overdoped regime is associated with small to moderate values of the coupling constant.
In this situation, second-order perturbation theory is likely to be valid. To second order in
g we find by performing a summation over frequencies

1

τk
= g2

∫
d2k′

2π2
Imχ(k − k′, εk − εk′)[n(εk′ − εk) + f (εk′)] (11)

wheren(ε) andf (ε) are Bose and Fermi distribution functions, respectively. The integration
over k′ can be split into an integration overεk′ and an integration over surfaces of
equal energy. Fork located at the Fermi surface, the first integral can be evaluated
analytically. The exact result is rather cumbersome, but to a good numerical accuracy
it can be approximated as

1

τk

= αc2
swg2

8γ

∫
FS

dk′

|vF (k′)|
T 2

ωkk′(ωkk′ + πT )
(12)

whereωkk′ = ωsf (1 + (k − k′ − Q)2ξ2), andk andk′ are two points at the Fermi surface.
The same expression is indeed obtained in an ordinary Fermi liquid. In the latter caseωsf ,
and henceωkk′ are of the order of the Fermi energy which is large compared toT . One
then immediately obtains 1/τk ∝ T 2 for all k, i.e., the resistivity is proportional toT 2 as
expected. In cuprates, however,ωsf is much smaller than the Fermi energy; the dominant
contribution to the integral overk′ in (12) then comes from the regions where the distance
betweenk′ (at the Fermi surface) andk − Q (at the ‘shadow’ Fermi surface) is minimal.
Clearly, this minimal distance is zero at hot spots. Expanding near each of the hot spots,
and performing the integration overk′, we obtain

τk = 4|vhs
F |

απg2ξ
√

ωsf

Qk

T 2
(13)

where

Qk =
√

ωsf (1 + (1k)2ξ2)

√
πT + ωsf (1 + (1k)2ξ2)

×
[√

ωsf (1 + (1k)2ξ2) +
√

πT + ωsf (1 + (1k)2ξ2)

]
. (14)

Here1k is the displacement ofk from a nearby hot spot, andvhs
F is the Fermi velocity at

the hot spots. It is clear from equation (14) thatτk is the largest in the regions of the Fermi
surface where1k is greater than the inverse correlation length, i.e.,(1k)2ξ2 � 1. These
regions provide the dominant contribution to the conductivity, while the regions near hot
spots contribute very little.

On averagingQk over the Fermi surface, one finds that〈Qk〉 is independent ofT for
T < T0, and〈Qk〉 ∼ T

√
ωsf ξ for T > T0, where the crossover temperature,T0, is given by

T0 ≈ ωsf (1kmax)
2ξ2/2π. (15)
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The extra factor of1
2 in T0 arises for numerical reasons. In general, one might expect

that T0 is of the order of the hopping integral, i.e., it is much larger thanT over the
whole experimentally probed range of temperatures. If this was the case, then the above
reasoning would imply that the resistivity,ρ ∼ T 2ξ

√
ωsf /〈Qk〉, would be roughly quadratic

in T . However, photoemission experiments performed at or near optimal doping show that a
substantial portion of the Fermi surface is located near the magnetic Brillouin zone boundary.
It is not unreasonable to assume that this will be the case for the overdoped materials as
well. In this caseT0 turns out to be much smaller than the hopping integral. For example,
in YBa2Cu3O7 on findsT0 ∼ 15 meV� t ∼ 250 meV. In this situation〈Qk〉 ∼ T

√
ωsf ξ

starting already from relatively low temperatures and henceρ(T ) ∼ T . Our numerical
analysis performed for the parameters of the NAFLM chosen to fit NMR experiments in
YBa2Cu3O7 (Monthoux and Pines 1994a, Stojković 1996) shows that the resistivity is indeed
roughly proportional toT over the temperature rangeT > T0 ∼ 15 meV. Hlubina and Rice
(1995a, b) obtainedT0 ≈ 20 meV with the same values of spin-fluctuation parameters, but
somewhat different band parameters; hence they foundρ ∼ T 2 up to higher temperatures.
We emphasize once again that the linear behaviour of the in-plane resistivity is due to the
fact thatωsf is the smallest parameter in the problem, even though it scales asT : the typical
ωsf (1k)2ξ2 are smaller than 2πT , but muchlarger thanωsf . If ωsf ∝ T was comparable
to πT aboveTcr , then the resistivity would be proportional toT 1/2. Alternatively, if ωsf

was large and nearly temperature independent, as is the case in the more heavily overdoped
cuprates, thenρ would be proportional toT 2, as seen experimentally. Notice also that,
since〈Qk〉 ∝ T

√
ωsf ξ aboveT0, the resistivity does not depend on the spin damping and

hence onωsf ξ2. We make use of this fact below when we discuss the behaviour of the
resistivity at smaller doping concentrations whereγ acquires a strongT -dependence.

It is also instructive to discuss the temperature dependence of the average scattering
rate, 〈〈1/τk〉〉 for T > T0. Under the same conditions as above,Qk ∝ T (1k), and the
integration over1k yields 〈1/τk〉 ∝ T log((1kmax)

2/ωsf ). However, theT -dependence
coming from the logarithm is rather weak and to a good accuracy〈1/τk〉 ∝ T . Therefore,
we see that atT > Tcr , inverting the average ofτk and averaging 1/τk yields a similar
linear-in-T dependence of the resistivity.

4. Underdoped cuprates

We now turn to the key issue of the paper, the behaviour of the underdoped materials. These
may easily be distinguished from overdoped materials on the basis of their low-frequency
magnetic behaviour, depicted in figure 1 (Barzykin and Pines (1995); see also Sokol and
Pines (1993)). Examples of underdoped cuprates include YBa2Cu4O8, YBa2Cu3O6+x , for
x 6 0.93, La2−xSrxCuO4 for x 6 0.2, Bi2Sr2CaCu2O8−δ (Bi 2212) compounds with
adjusted oxygen partial pressure during annealing and Hg 2223. As seen in figure 1,
underdoped cuprates exhibit two different crossovers in the normal state at the temperatures
Tcr and T∗ < Tcr . Above Tcr their behaviour is similar to what has been observed for
overdoped systems: it is non-universal, but the resistivity is approximately linear inT ,
and the ratio63T1T/63T 2

2G is independent ofT , as shown for YBa2Cu4O8 in figure 5(a).
The linear behaviour of the resistivity persists belowTcr with only a subtle change in
slope; however, the magnetic properties change rather drastically belowTcr . As shown in
figure 5(b) for YBa2Cu4O8, 63T1 becomes almost independent ofT , while T2G becomes
proportional toT in such a way that the ratio63T1T/63T2G is independent ofT . Using
equations (9) and (10), we find that in thisT -range the inverse correlation length andωsf



Temperature crossovers in cuprates 10027

Figure 5. (a) The ratio63T1T/T 2
2G as a function of temperature in underdoped YBa2Cu4O8.

As in overdoped samples, this quantity becomes independent of temperature aboveTcr ∼ 450–
500 K; (b) 63T1T/T2G as a function of temperature for the same compound. This ratio is almost
a constant in the temperature intervalT∗ < T < Tcr , which is a signature of thez = 1 scaling
regime. In both graphs, the dashed line is a guide to the eye.

both increase linearly with increasingT , in such a way thatωsf ξ = constant, implying
z = 1 behaviour. The uniform susceptibility is also proportional toT below Tcr . Finally,
at even lower temperatures,T < T∗, the system enters into a regime where the correlation
length becomes independent ofT , 63T1T ∝ ωsf increasesas T decreases further towards
Tc (63T1T displays a minimum atT ∼ T∗), and both the uniform susceptibility and 1/63T1T

fall off sharply with decreasingT . This regime has been called a ‘pseudogap regime’ as
the behaviour of, e.g.,χ0(T ), is, at first sight, reminiscent of the behaviour of systems
which display a true quasiparticle energy gap, such as a superconductor or an ordered
antiferromagnet. However, the curvature of the fall-off inχ0(T ) is opposite to that found
below Tc in conventional superconductors (Slichter 1994).

We see therefore that the new features of the underdoped cuprates, as illustrated in
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figure 1, are (i) the crossover fromz = 2 to z = 1 behaviour atTcr , and (ii) the crossover to
pseudogap behaviour at an even lower value ofT∗. This sequence of crossovers is shown
schematically in figure 4(b).

Before presenting our scenario for these crossovers, we briefly review the results of
the σ -model-based studies of the low-temperature crossovers between differentuniversal
scaling regimes in disordered antiferromagnets (Chakravartyet al 1988, 1989, Chubukov
et al 1994b, Sachdevet al 1995). In the disordered state atT = 0, the antiferromagnets
possess a gap,1, in the excitation spectrum. If the damping term atT = 0 is much smaller
than1, then, asT increases, the system experiences a crossover from a quantum-disordered
regime with an exponential (e−1/T ) behaviour of observables, to thez = 1 quantum-critical
regime. If, in contrast, atT = 0, γ � 1, then the sequence of crossovers with increasing
T is from a quantum-disordered regime with apower-lawbehaviour of observables to the
z = 2 scaling regime with overdamped spin fluctuations, and finally, at even largerT , to
the z = 1 scaling regime in which typical magnon frequencies and the damping term both
scale linearly withT .

We see that for all ratios ofγ /1 the prediction of the sigma-model-based studies is
that z = 1 behaviour always occurs at higher temperatures thanz = 2 behaviour. This is
simply due to the fact thatz = 1 scaling requires that typical frequencies should be larger
than theT = 0 value of the damping term. Experimentally, however, the situation is the
opposite: in underdoped cuprates, one observes purely relaxational behaviour at high enough
temperatures, andz = 1 scaling at lower temperatures (Barzykin 1996). The crossover at
low T from the quantum-disordered behaviour to thez = 1 quantum-critical behaviour is
more consistent with the observations aroundT∗, but again, the opposite curvature of the
fall-off in χ0(T ) compared to the sigma-model prediction indicates that the crossover atT∗
involves not only localized spins, but also electronic degrees of freedom.

Monthoux and Pines (1994b) proposed that the reversed behaviour observed in
underdoped cuprates belowTcr is due to the strong temperature variation of the damping
term γ in the dynamical spin susceptibility, which in turn gives rise to the anomalous
temperature dependence ofωsf . This temperature variation is neglected in theσ -model
approaches which assume that throughout the whole temperature range of interest, the input
parameters in the dynamical susceptibility retain the same values as atT = 0. Below
we relate the temperature variation of the damping rate to the formation of a precursor
to a spin-density-wave state which in turn causes the evolution of the quasiparticle Fermi
surface with temperature and doping concentration. We argue that the two crossover scales
Tcr and T∗, observed in underdoped cuprates indicate the onset and the end point of this
Fermi-surface evolution, respectively. AtTcr , the onset of the crossover, the quasiparticle
residue along the Fermi surface develops a minimum at hot spots; atT∗, the end point of the
crossover, the system actually begins to lose pieces of the Fermi surface. In other words,
we argue that there exists only one extended crossover in system behaviour in which the
electronic structure gradually develops the features of a precursor to a spin-density-wave
state. In this scenario,z = 1 scaling in the temperature rangeT∗ < T < Tcr is just an
intermediate asymptotic in the extended crossover region, rather than an extension of the
z = 1 quantum-critical scaling observed in the intermediateT -range right at half-filling.

Fermi-surface evolution with doping at fixedT has been observed in photoemission
experiments on YBCO (Liuet al 1992) and more recently in experiments on Bi 2212
(Marshallet al 1996, LaRosaet al 1996). These experiments demonstrated that while near
optimal doping the hole Fermi surface is large and encloses an area consistent (to within the
accuracy of the measurement) with the Luttinger theorem, the measured Fermi surface
in underdoped materials loses pieces near(π, 0) and symmetry-related points. Recent
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experiments by Dinget al (1996) have shown that the same effect occurs at a fixed doping as
the temperature is lowered. The transformation of spectral weight from the low-frequency
part of the spectrum to higher energies upon approaching half-filling has been observed
by Timusk and his collaborators in optical experiments on the planar conductivityσ(ω, T )

(Puchkovet al 1996); the same experiments also demonstrated that there is no spectral
weight transformation at optimal (and larger) doping.

Recently, one of us has considered Fermi-surface evolution with increasing spin–
fermion coupling constant in the NAFLM atT = 0 (Chubukovet al 1996). It was
found that asg increases, the quasiparticle residue,Z, near hot spots decreases. The
decrease ofZ becomes appreciable when the coupling constantg exceeds a critical value
g(1)

cr ∼ vF /(ωsf χQ log(C/ωsf ))1/2. Notice that g(1)
cr vanishes logarithmically when the

correlation length becomes infinite. Asg increases even further, the quasiparticle Fermi
surface undergoes a substantial evolution in the process of which parts of the Fermi surface
near the corners of the magnetic Brillouin zone (where the hot spots are located when
g → 0) move away and, simultaneously, there appear two distinct peaks in the density of
states—the precursors of the valence and conduction bands. This evolution of the Fermi
surface occurs in the range ofg-values of the order of the upper cut-off in the staggered spin
susceptibility,g ∼ g(2)

cr ∼ C > g(1)
cr . It was further argued that as the system approaches

half-filling, the effective coupling constantg increases, while bothg(1)
cr and g(2)

cr decrease,
so in varying the ratiog/gcr one in fact varies the doping concentration.

Suppose now we fix the doping and vary the temperature. As the temperature decreases,
the inverse correlation length and the damping rate decrease, and, hence, both critical values
of g go down (g(1)

cr goes down chiefly because of the decrease of damping, whileg(2)
cr goes

down chiefly because of the decrease ofξ−1). As a result, even if the effective coupling
constant weakly depends onT , the ratios,g/g(1)

cr andg/g(2)
cr still increase with decreasing

T . This in turn implies that, as the temperature is lowered, one should observe crossovers
in the system behaviour analogous to those described above. These crossovers will occur
at temperatures at whichg(1,2)

cr (T ) become equal to a giveng. It seems natural to associate
the temperature at whichg(1)

cr (Tcr ) = g with Tcr , and the temperature at whichg(2)
cr (T∗) = g

with T∗.
We now consider the conditions under which the system exhibitsz = 1 scaling behaviour

belowTcr . Scaling withz = 1 requires that typical frequencies and momenta be of the order
of T . In the NAFLM, this will be the case if bothξ−1 andωsf scale linearly withT , which
in turn implies that0̃−1

Q1
andγ should exhibit the same linear dependence onT as doesξ−1

(Chubukovet al 1994b, Monthoux and Pines 1994b). Thus one should have betweenTcr

andT∗

γ ∼ 0̃−1
Q ∼ ξ−1 = a + bT (16)

while, as we have seen, aboveTcr , γ and 0̃−1
Q are independent ofT . As we discussed

above, the temperature-dependent inverse correlation length should be considered as an
input parameter in the NAFLM because if one attempts to compute the real part of the spin
susceptibility (from whichξ is inferred) in RPA-type calculations, one would need to know
the exact form of the fermionic Green’s function far away from the Fermi surface. Hence,
the linear-in-T dependence ofξ−1 below Tcr follows from the fit to the NMR data of63T1

and T2 (Barzykin and Pines 1995). In contrast, the linear-in-T dependence ofγ has to
be obtainedwithin the NAFLM approach, although at the moment we do not have a clear
recipe for calculating it.

It is essential however not to confuse the intermediatez = 1 scaling regime in
underdoped cuprates with thez = 1 quantum-critical scaling in pure antiferromagnets.
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In the latter case, the damping of spin excitations is due to the interaction between spin
fluctuations, and one can argue quite generally that it should be linear inT whenξ−1 ∝ T

(Chubukovet al 1994b). However, the estimates of Barzykin and Pines (1995) show that
at doping concentrations where experiments on underdoped cuprates have been performed,
the purely magnetic damping is too small to account for the experimental data. In other
words, in thez = 1 regime in underdoped cuprates, the damping primarily comes from the
interactions with fermions (this is why we describe this regime as ‘pseudoscaling’). At the
same time we expect that belowTcr , lattice corrections are not large. Then, once thez = 1
form of the dynamical susceptibility forq nearQ is obtained, one can use the universal
scaling forms obtained forz = 1 quantum-critical scaling for both uniform and staggered
susceptibility. In particular, this implies that the static uniform susceptibility should be linear
in T , in agreement with experiment. This, we recall, is different from thez = 2 regime
at higher temperatures, where the physics is dominated by short-wavelength fluctuations
and one could only formally use the predictions of thez = 2 quantum-critical scaling to
obtain theT -dependence of observables associated with the dynamical susceptibility near
Q; however, the temperature dependence of the uniform susceptibility was very different
from the scaling prediction.

We note in passing that the fact that spin damping is chiefly due to the interaction with
fermions may resolve an apparent discrepancy between the values of the spin-wave velocity
in YBa2Cu3O6.63 extracted from a linear fit to the uniform susceptibility and from the ratio
63T1T/T2G (Millis and Monien 1994, Chubukovet al 1994a). Indeed, the slope of the
uniform susceptibilityχ0 ∝ T is finite in the absence of spin damping. It does not change
much with doping compared to its value at half-filling, and therefore is likely to only weakly
depend onγ . Accordingly, the fit forχ0(T ) yields acsw which is slightly larger than that
found at half-filling, which agrees with analytical calculations at small doping (Chubukov
and Frenkel 1992, Schulz and Zhou 1995). At the same time, the NMR relaxation rate is
proportional to the damping, and for this quantity it is essential to know where the damping
comes from. A fit to NMR data using theσ -model results yields a spin-wave velocity
which is a few times smaller than at half-filling. If instead, we extractcsw from the NMR
data using Fermi-liquid damping, we obtain a spin-wave velocity larger by a factorγFL/γsf

which better agrees with the velocity extracted from the susceptibility data.
We consider next the behaviour of the resistivity. Experimentally, it is linear inT both

above and belowTcr with about the same slope. On the theoretical side, we have seen above
that the resistivity is linear inT as long as over substantial portions of the Fermi surface,
T is larger thanT0. This result holds approximately even whenγ acquires a substantial
T -dependence, provided that the vertex corrections are not too large. More importantly,
the decrease of the spectral weight near the hot spots has little effect on the conductivity,
simply because the dominant contributions to conductivity come from the pieces of the
Fermi surface which are relatively far from hot spots. A careful inspection of the measured
shape of the Fermi surface in YBCO compounds (Gofronet al 1994, Campuzanoet al 1994)
and the fits to NMR measurements (Barzykin and Pines 1995), shows that in the underdoped
cupratesT0 is also substantially smaller thanTcr . In the intermediate,z = 1 scaling regime,
γ acquires a temperature dependence, andT0 becomes a function ofT , scaling asT0 ∼ T −1.
However, the slope is rather small and everywhere in thez = 1 regimeT0 remains smaller
than T , i.e., the resistivity remains linear inT , in good agreement with the experimental
results in, e.g., YBa2Cu4O8 (Bucheret al 1993; see figure 6). The two temperature scales
(T andT0(T )) become comparable to each other at a temperature which in YBa2Cu4O8 is
rather close toT∗ (T∗ is roughly 220 K andT0(T∗) ∼ 250 K). We emphasize, however,
that the behaviour of resistivity in our model is non-trivial and depends on the shape of the



Temperature crossovers in cuprates 10031

Figure 6. The resistivity along thea-axis for underdoped YBa2Cu4O8. Notice that the linear
behaviour starts at aroundT∗, and the minor change of slope atT = Tcr . Below T∗, the
resistivity falls off rapidly with decreasingT .

quasiparticle band structure. Hence our argument, based on YBa2Cu4O8, that the crossover
in resistivity occurs nearT∗ need not necessarily apply to all high-Tc compounds.

We now turn to the crossover atT = T∗. Barzykin and Pines (1995) associated this
crossover with the transformation from thez = 1 quantum-critical to thez = 1 quantum-
disordered regime. We have associated the same crossover with the development of the
precursors of the spin-density-wave state in the electronic structure. We now show that
the two identifications of the crossover atT∗ are in fact complementary. We note first
that in order to obtain predominantlyz = 1 behaviour for the observables in the quantum-
disordered regime, one must get rid of the Landau damping term in the dynamical staggered
susceptibility. Otherwise, the system at the lowestT will necessarily cross over to the
quantum-disorderedz = 2 regime, where, e.g.,63T1T ∝ ωsf = constant, which does not
agree with the data belowT∗ (we recall that the measured63T1T increasesas the temperature
is lowered belowT∗). What happens when the quasiparticle spectrum develops a pseudogap
near the corners of the Brillouin zone? At first glance, one might argue that the spin damping
must become exponentially small inT at low temperatures because the former hot spots
which chiefly contributed to the damping in the overdoped regime disappear. However,
this argument is incorrect because in a process of the Fermi-surface evolution towards
small pockets, there appear new hot spots which survive even in a situation in which the
spin-density-wave structure of the electronic states is already developed.

The actual reason that the damping term goes down sharply when pockets are formed
relates to the form of the fully renormalized spin–fermion vertex: in the spin-density-
wave state with long-range order this vertex vanishes identically for the bosonic momentum
Q because of the Ward identity (Adler principle); thus, the damping term in the spin
susceptibility in fact scales as Imχ−1(q, ω) ∝ iω(q − Q)2 (Sachdev 1994, Schrieffer 1995,
Sachdevet al 1995). In the precursor to the spin-density-wave state, there is no precise
requirement that the full vertex atQ should vanish; however, explicit calculations show
that vertex corrections (which in theg � C limit have a negative sign) almost completely
cancel the bare interactiong such that the fully renormalized vertex turns out to be small
compared tog by a factor of(g(2)

cr /g)2 (Chubukovet al 1996). Very similar arguments have
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been previously provided by Schrieffer (1995).
A nice feature of the large-g limit in the spin–fermion model is that the smallness of

g(2)
cr /g not only yields a small vertex but also allows one to compute the full vertex and

full fermionic Green’s function by expanding in powers ofg(2)
cr /g. This in turn allows

one to compute fermionic damping: one just substitutes the full Green’s functions and full
vertex into the particle–hole bubble. We have performed this calculation and found that the
damping term contains a small factor(g(2)

cr /g)4. Since the ratiog/g(2)
cr decreases withT ,

the damping term rapidly decreases with decreasing temperature, and at low temperatures
becomes smaller thancswξ−1 which is the energy scale of a gap in the spin susceptibility.
In this situation, the system should display predominantlyz = 1 quantum-disordered
behaviour, in agreement with the data belowT∗. In particular,ωsf ∝ 1/γ should increase
as T decreases which in turn leads to theincreaseof 63T1T with decreasing temperature.
In addition, belowT∗, the resistivity scales asρ ∝ T 2/ωsf , i.e., it rapidly (faster than
T 2) decreases with decreasingT . This rapid decrease ofρ is also consistent with the
experimentally observed behaviour of the resistivity (see figure 6). Finally, at even lower
temperatures, the system should, in principle, undergo a crossover toz = 2 quantum-
disordered regime, but the crossover temperature is probably lower thanTc which implies
that this crossover cannot be observed experimentally.

The reduction of the spin–fermion interaction vertex also affects the low-T behaviour
of the uniform susceptibility. In a fully developed spin-density-wave state with long-
range order only the longitudinal susceptibility has a (doping-dependent) Pauli contribution,
associated with a finite density of holes; the transverse susceptibilityχ⊥ at finite doping
remains virtually the same as at half-filling because the Pauli contribution toχ⊥ is reduced
by vertex renormalization (Chubukov and Frenkel 1992, Chubukov and Musaelian 1995).
Specifically, we have

χ
(T =0)
⊥ = Zχ

4J
+ O(x) χ(T =0)

zz = 1

2
χρ (17)

wherex is the doping concentration,Zχ is the quantum renormalization factor, and for a
Fermi surface consisting of small pockets near(π/2, π/2), one findsχρ = √

m1m2/2π ,
wherem1 andm2 are the two effective masses for fermionic dispersion. In order to estimate
χρ , we use the photoemission data for the oxychloride Sr2CuO2Cl2 (Wells et al 1995,
LaRosaet al 1996). These data yieldm1 ≈ m2 ≈ 1/2J , or χρ ≈ 1/4πJ . In the preformed
spin-density-wave state the transverse and longitudinal susceptibilities are indistinguishable,
so

χu(T → 0) ≡ 1

3
χ⊥ + 1

3
χzz = Zχ

12J
+ 1

6
χρ. (18)

Consider further the underdoped cuprates with a magnetically disordered ground state
and a small Fermi surface. As the correlation length saturates to a finite value asT → 0, the
magnetic part of the susceptibility vanishes (Zχ → 0). We are thus left with only the Pauli
contribution, i.e.,χu = (1/3)(χρ/2) ≈ 1/24πJ . We emphasize that the factor 1/3 inχu is
due to the spin–fermion vertex reduction, i.e., the same effect as yields a reduction in the
spin damping. Reinserting the(gµB)2 factor inχu we obtainχu/µ

2
B ∼ 0.4 states eV−1 per

Cu atom which is some six times smaller thanχu/µ
2
B > 2.6 states eV−1, the result for an

optimally doped sample such as YBa2Cu3O7, or for overdoped samples. We see therefore
that the uniform susceptibility in the preformed spin-density-wave state with a small Fermi
surface is much smaller than that found at larger doping levels with large Fermi surfaces,
despite the fact that the Pauli susceptibility in 2D does not depend onpF and is the same
for large and small elliptical Fermi surfaces.
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5. Optimal doping

Optimally doped cuprates are frequently defined as those which, within a given family,
exhibit the highestTc. Examples of optimally doped materials include, e.g., YBa2Cu3O6.93

and La1.85Sr0.15CuO4. Photoemission experiments on YBCO systems and the bismuthates
have shown that these materials have a large Fermi surface in close analogy with overdoped
cuprates. At the same time, from a magnetic perspective, optimally doped materials
are members of the underdoped family, in that their uniform susceptibility exhibits the
same crossovers atTcr and T∗ as are seen in other underdoped materials. The analogy
between underdoped and optimally doped materials has also been observed in photoemission
experiments on Bi 2212 (Dinget al 1996): in both types of material, there exists a pseudogap
in the normal state which disappears atT ∼ Tcr which is substantially larger thanTc.

Another feature of optimally doped materials is that their resistivity continues to be
linear in T down toT ∼ Tc. According to the arguments that we have given above, such
linearity aboveT0 reflects both the closeness of the Fermi surface to the magnetic Brillouin
zone boundary and the particular spin-fluctuation spectrum. It is tempting to conjecture that
in the optimally doped cuprates the Fermi surface is rather flat in such a way that(1kmax)

2

is minimized, which in turn yields a minimum inT0 as a function of doping. This flattening
of the Fermi surface would also give rise to stronger vertex corrections which, as we recall,
act to increase the spin–fermion interaction vertex and henceTc, before any changes in the
Fermi-surface topology take place.

6. Summary

We have proposed a specific scenario for the temperature crossovers in the overdoped and
underdoped cuprates. We considered a nearly antiferromagnetic Fermi-liquid model and
argued that in the overdoped regime the spin damping,γ ∝ (ωsf ξ2)−1, is independent of
temperature over the entire experimentally probedT -range. In this situation the magnetic
behaviour is described by a mean-fieldz = 2 dynamical susceptibility. We argued that the
resistivity has a crossover from a Fermi-liquid-likeT 2-behaviour atT < T0 to a linear-in-T
behaviour forT > T0; the crossover temperatureT0 is low due to the proximity of the
Fermi surface to the magnetic Brillouin zone boundary. We further argued that in order
to account for the experimentally measured sequence of crossovers in underdoped cuprates
from the Fermi-liquid,z = 2 behaviour at high temperatures to thez = 1 scaling behaviour
at intermediateT , and to the pseudogap behaviour at even lowerT , one has to take into
consideration the thermal variation of the damping rate of spin excitations,γ . We argued
that the primary source of the variation ofγ with T in the underdoped cuprates is the thermal
evolution of the quasiparticle dispersion near the Fermi surface produced by the precursor of
a spin-density-wave state. Within our approach, we found consistency with the experimental
data on resistivity, NMR relaxation rates and uniform susceptibility in underdoped cuprates
(for a discussion of the application of the NAFLM to the Hall effect measurements see
Stojkovíc 1996). We emphasize, however, that here we only discuss a possible scenario of
how the damping evolves withT . At present, we can compute this damping either for very
small or very large values of the coupling constant. Direct calculations ofγ (T ) within the
spin–fermion model at intermediate couplings are clearly called for.

A final note. Our scenario is in contradiction with the proposals (Emery and Kivelson
1995, Randeriaet al 1994, Ding et al 1996) that the physical origin of the pseudogap
behaviour is the precursor to the d-wave pairing state. Both this and our scenario imply that
the quasiparticle gap near(0, π) observed in photoemission measurements in the normal
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state of underdoped cuprates should not change as the system becomes superconducting, in
agreement with the data. In the precursor to the d-wave pairing scenario, the superconducting
gap is already preformed by superconducting fluctuations, while in our scenario there exists
a preformed spin-density-wave gap near(0, π).

The photoemission data of Dinget al (1996) have been interpreted as evidence in
favour of a preformed d-wave gap. They measured a gap as a shift of the midpoint of
the leading edge of the photoemission spectrum, and found that the shift, which is of the
order of 20 meV, has the samek-dependence as the d-wave gap in the superconducting
state. In contrast, Marshallet al (1996) estimated the gap from the position of the
maximum in the spectral function. They found a much larger gap of about 0.2 eV for
the 60 K superconductor, which is fully consistent with spin-density-wave scenario (in a
fully developed spin-density-wave state, the gap near(0, π) is about 2J ∼ 0.25 eV). In the
absence of a theory for the lineshape, it is difficult to say with confidence which interpretation
of the data is correct. We note, however, that no preformed gap has been observed in
overdoped cuprates. While the magnetic scenario leads naturally to the prediction that there
should be no sign of a pseudogap in overdoped cuprates (superconductivity occurs before
a spin-density-wave precursor can develop), it is not clear why precursors to the d-wave
pairing state should disappear in overdoped materials. Finally, we note that the magnetic
scenario correctly describes the whole sequence of crossovers in the normal state including
the crossover atTcr which can easily be much larger thanTc (e.g.,Tcr ≈ 6Tc in YBa2Cu4O8).
Moreover, NMR experiments on YBa2Cu3O7, YBa2Cu4O8 and La1.85Sr0.15CuO4 suggest
that the magnetic correlation length is approximately the same atTcr , ξ(Tcr ) ∼ 2a, in all of
these compounds, implying yet another connection between the magnetic and the pseudogap
behaviour. It also seems unlikely that one could explain the crossover toz = 1 scaling as
due to a precursor of the d-wave pairing. We therefore believe that the pseudogap has a
magnetic rather than a superconducting origin.

Several researchers (see, e.g., Millis and Monien 1994) have argued that the pseudogap
behaviour in the underdoped cuprates is due to an exchange coupling,J⊥, between the
bilayers found in a unit cell. Indeed, strong bilayer coupling leads to singlet configurations
of adjacent spins which gives rise to a gap in the spin excitation spectrum. In an insulator,
however, one needs a rather largeJ⊥ (∼ 2.5J ) to produce the single configuration between
adjacent spins in the bilayers, while recent experiments findJ⊥ ∼ 0.1J (Keimeret al 1996).
For doped materials, Ioffeet al (1994) argued that the effective bilayer coupling scales as
J

eff

⊥ ∝ J⊥χ2(Q), i.e., it is enhanced if susceptibility is strongly peaked atQ. This effect is
certainly present at optimal doping; however, we argued above that in the underdoped
cuprates (where a pseudogap has been observed), the enhancement of susceptibility is
compensated by vertex corrections. In this situation,J eff should be of the same order
as the bare coupling and is unlikely to give rise to a spin gap unless one assumes that there
is a spin–charge separation (Milliset al 1996, Ubbens and Lee 1994). Our point of view
is that the pseudogap behaviour is an intrinsic property of a single CuO2 layer as the data
on the spin–lattice relaxation rate, the uniform susceptibility, andξ(T ) in the single-layer
La2−xSrxCuO4 materials display the same sequence of crossovers as seen for the bilayer
YBa2Cu3O6+x materials.

Acknowledgments

It is our pleasure to thank A Millis for helpful conversations and a careful reading of the
manuscript. We thank V Barzykin, B Batlogg, G Blumberg, H Monien, M Onellion, S
Sachdev, D Scalapino, C Slichter, R Schrieffer, Z-X Shen, A Sokol, R Stern and T Timusk



Temperature crossovers in cuprates 10035

for numerous discussions and comments. We also thank N Curro for providing us with
the NMR data on the 124 compound prior to publication. AC and DP acknowledge the
hospitality of ITP, Santa Barbara, where part of this work was performed. The research at
ITP was supported in part by an NSF grant PHY94-071194. AC is an AP Sloan fellow.
DP and BPS are sponsored in part by NSF grants NSF-DMR 89-20538 (Materials Research
Laboratory at the University of Illinois at Urbana–Champaign) and NSF-DMR 91-20000
(Science and Technology Center for Superconductivity).

References

Altshuler B L, Ioffe L B and Millis A J 1995Phys. Rev.B 52 415
Amin M H S andStamp P C E1996Phys. Rev. Lett.77 301
Anderson P W 1987Science235 1196
——1994Rev. Math. Phys.6 1085
Barzykin V 1996Phil. Mag. at press
Barzykin V and Pines D 1995Phys. Rev.B 52 13 585
Barzykin V, Sokol A, Pines D and Thelen D 1993Phys. Rev.B 48 1544
Bourges P, Regnault L P, Sidis Y and Vettier C 1996Phys. Rev.B 53 876
Bucher B, Steiner P, Karpinski J, Kaldis E and Wachter P 1993Phys. Rev. Lett.70 2012
Bulut N, Scalapino D J and White S R 1993Phys. Rev.B 47 2742
Campuzano J C, Gofron K, Ding H, Liu R, Dabrowski B and Veal B 1994J. Low Temp. Phys.95 245
Chakravarty S and Anderson P W 1994Phys. Rev. Lett.72 P3859
Chakravarty S, Halperin B I and Nelson D 1988Phys. Rev. Lett.60 1057
——1989Phys. Rev.B 39 2344
Chubukov A V 1995 Phys. Rev.B 52 R3840
Chubukov A V and Frenkel D 1992Phys. Rev.B 46 11 884
Chubukov A V, Morr D K and Shakhnovich K A 1996 Phil. Mag. at press
Chubukov A V and Musaelian K 1995Phys. Rev.B 51 12 605
Chubukov A V, Sachdev S and Sokol A 1994aPhys. Rev.B 49 9052
Chubukov A V, Sachdev S and Ye J 1994bPhys. Rev.B 49 11 919
Curro N, Corey R and Slichter C P 1996Preprint
Ding H et al 1996Nature382 51
Emery V K and Kivelson S A 1995Phys. Rev. Lett.74 3253
Gofron K, Campuzano J C, Abrikosov A A, Lindroos H, Bansil A, Ding H, Koelling D and Dabrowski B 1994

Phys. Rev. Lett73 3302
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